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Introduction
Protein, moisture, and ash content are the principle 
parameters measured to determine wheat flour quality. 
These parameters are commonly quantified using either 
primary methods or Fourier transform near-infrared (FT-NIR) 
spectroscopy. Replacing the primary methods with 
FT-NIR provides faster results and accurate quantification, 
guaranteeing flour meets specifications. Rapid quality 
testing in the flour milling industry is critical for maximizing 
production, monitoring extraction efficiency, and producing 
flour to supply the ever increasing worldwide food demand. 
In addition, quality testing data is used to segregate 
flour for its intended use and to meet precise customer 
specifications. The following section discusses the primary 
methods commonly used to quantify protein, moisture, and 
ash content of wheat flour.

Protein content is the basis for judging flour quality and is 
vitally important to its functionality and finished-product 
attributes. For example, low protein content is desired for crisp 
or tender products, such as snacks or cakes, and high protein 
content is desired for products with a chewy texture, such 
as breads. The two primary methods for determining protein 
in flour or wheat are the Kjeldahl and Dumas methods.1 Both 
of these methods require lengthy sample preparation, time 
consuming analysis and, in the case of the Kjeldahl method, 
involve the use of caustic and toxic chemicals.

Moisture content is important for shelf-life and storage. Very 
high moisture content (greater than 14.5%) attracts mold, 
bacteria, and insects, all of which can result in storage issues 

or baking quality deterioration. The primary method for 
determining moisture content is weight loss by oven drying 
which requires multiple steps and several hours for results.

Ash is a measure of mineral content and is used to grade 
flour into different varieties. For example, whole wheat 
flour has a higher ash level than white flour. By quantifying 
ash levels during processing, flour millers can maximize 
extraction efficiencies and optimize blending. For bakers, ash 
content provides information on both finished product color 
and flavor. The primary method for determining ash content 
is gravimetric combustion. This method can be quite lengthy, 
taking several hours or overnight to complete.
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As summarized in Table 1, the aforementioned primary 
methods require trained analysts, involve the use of toxic 
chemicals, entail time consuming sample preparation, and 
are burdened by time delays waiting for results. In contrast, 
flour samples can be analyzed by FT-NIR without sample 
preparation or the use of chemicals, providing faster, more 
accurate, and reliable results. FT-NIR analysis also provides 
immediate return on investment by eliminating the cost of 
consumables, rework, or discarding of product that does 
not meet specifications. In this application note, we will 
demonstrate the successful quantitative analysis of wheat 
flour components including ash, protein, and moisture 
using the Thermo Scientific Antaris II FT-NIR analyzer.

Experiment
Development of the 
calibration models for 
quantifying the wheat flour 
components of protein, 
moisture, and ash began 
with the collection of the 

flour samples from multiple production lots. All samples 
were held at room temperature and analyzed by diffuse 
reflection on an Antaris II FT-NIR system equipped with an 
integrating sphere and a 5 cm spinning cup accessory, as 
shown in Figure 1. The spinning cup accessory rotates the 
sample cup filled with the flour over the integrating sphere 
window while spectra are collected and co-averaged. This 
provides a single spectrum representing the average diffuse 
reflectance of the sample for model development. Thirty-two 
co-averaged scans were collected at 8 cm-1 resolution in less 

Table 1: FT-NIR advantages vs. primary methods

Figure 1: Spinning cup accessory

Figure 2: 
SNV with first 
derivative 
treated spectra 
of flour protein 
standards used 
for PLS model 
development

Key Metric Dumas or Kjeldahl Combustion Loss on Oven Drying FT-NIR

Sampling Destructive Destructive Non-destructive Non-destructive

Sample Preparation Yes Yes Yes No

Actual Analysis Time 2–12 hrs Several hours or overnight 2–4 hrs <20 seconds

Data Turnaround Time Hours/Days Hours/Days Hours Minutes

Consumables Cost Per Test High Medium Low None

Technical Analyst High Low Low Low

Location of Analysis Lab Lab Lab Lab or Process Floor

Hazardous Chemicals Yes No No No

Hazardous Temperatures Yes, 900 °C for Dumas, 
420 °C for Kjeldahl

Yes, 585 °C Yes, 130 °C No

Component Protein Ash Moisture Protein, Ash, Moisture, other

than 20 seconds. Primary reference data for each component 
were obtained from the methods listed in Table 2.

Individual PLS models for the quantitative analysis 
of ash, protein, and moisture were developed using 
Thermo Scientific™ TQ Analyst™ Software. PLS models use 
a statistical approach to quantitative analysis by examining 
the selected region or regions of the standard spectra to 
determine which areas vary statistically as a function of 
component concentration.2 PLS was chosen for this analysis 
because it can account for broad or overlapping peaks which 
are typically encountered in flour spectra. The concentration 
ranges for the components quantified are listed in Table 3.

All three models used Standard Normal Variate (SNV) pathlength 
treatments to mitigate spectral baseline shifting due to variation 
in flour particle size and sample cup packing. To enhance 
spectral features, protein standard spectra were pretreated using 
a first derivative with Norris smoothing at a segment length of 5 
and gap between segments of 5, see Figure 2. Ash and moisture 
standard spectra were pretreated using a second derivative to 
enhance spectral features as well using Norris smoothing at a 
segment length of 3 and gap between segments of 3.

Table 2: Primary reference methods used for calibration development

Component Method Parameter

Ash Loss on combustion at 
500 °C

Percent of inorganic 
material

Protein Dumas Percentage of Nitrogen

Moisture Oven loss on drying at 
130 °C 

Percent weight of 
moisture

Table 3: Concentration ranges for ash, protein and moisture in 
ground wheat flour used for calibration development

Components Low High

Ash 0.27 % 2.12 %

Protein 6.3 % 17.3 %

Moisture 9.0 % 15.2 %



Spectral analysis regions for ash and moisture models 
were determined using the Suggest Regions wizard in 
TQ Analyst. This easy-to-use tool automatically chooses 
the appropriate spectral regions for analysis. Since region 
selection is often an iterative process, the Suggested 
Regions wizard provides a good starting point for model 
optimization. Manual selection of regions based on 
pretreated spectra is also easily accomplished using TQ 
Analyst. For ash and moisture, the Suggested Regions tool 
was able to provide the best model results. The spectral 
range suggested for ash was 9,895.12 – 4,053.59 cm-1 
and for moisture the spectral range was 9,895.12 – 
4,053.59 cm-1. The number of calibration standards used 
were 564 calibration and 68 validation standards for the 
ash model and 550 calibration and 70 validation standards 
for the moisture model. Calibration standards are used 
during calibration model development to relate the variation 
in spectral features to component concentration. Validation 
standards are not used in the calibration but are used to 
provide an unbiased test of calibration model performance.

In contrast, a more advanced visual development tool, 
Statistical Spectra, was used to optimize the protein model. 
This tool generates spectra showing the correlation of spectral 
variation to changes in component concentration, see 
Figure 3. The correlation of the spectral regions to component 
concentration ranges from zero to one with one being 
perfect correlation. This tool also provides both development 
flexibility and model optimization capability by helping with 
manual selection of the regions that correlate highest with the 
changes in component concentration. The statistical spectra 
tool identified nine regions with high correlation, five peaks 
above 0.9 and four peaks above 0.8, for model development 
on 593 calibration and 86 validation standards.

Figure 3: Statistical spectra showing the correlation of spectral variation to changes in component concentration. The region highlighted 
showing a correlation greater than 0.90.

Table 4: Summary of Calibration results for PLS Models

Results and discussion
All three PLS models developed show low Root Mean 
Square Error of Calibration (RMSEC) and good correlation 
to the primary method data while using relatively few 
factors. The correlation coefficient and RMSEC are 
measures of how well the component concentrations of 
the calibration standards are predicted by the calibration 
model. Ideally, the correlation coefficient should have 
a value close to one, and the RMSEC approaching the 
standard error of the primary technique. The Factors 
represent independent sources of variation condensed 
from the concentrations and spectral information and are 
ranked by the amount of variation in the data that they 
explain. Table 4 shows how well the PLS models accurately 
quantify the components ash, protein, and moisture 
in wheat flour. In addition, comparing the Root Mean 
Square Error of Prediction (RMSEP) values to the RMSEC 
we see a good indication of how the model accurately 
predicts samples not in the calibration. The RMSEP is 
computed with the independent set of validation samples 
that were withheld from the calibration. Another test of 
model robustness is the Root Mean Square Error of Cross 
Validation (RMSECV). This diagnostic sequentially removes 
a specified number of standards from the calibration set, 
calibrates the method, and then uses the new calibration 
model to quantify the standards that were removed 
from the calibration set. This is repeated until all of the 
standards in the calibration set have been quantified as 
validation standards. A good measure of model accuracy 
is for both the RMSECV and the RMSEP to be less than 
two times the RMSEC. This is the case for all three PLS 
models discussed here. The following section highlights 
many of the features provided in TQ Analyst for region 
selection, diagnostics, and outlier removal that were used 
for optimizing all three PLS models. We will examine the 
protein method in detail to demonstrate the tools available 
in TQ Analyst for Chemometric model development.

PLS 
Model Factors RMSEC Correlation  

Coefficient RMSECV RMSEP

Ash 6 0.032 0.989 0.042 0.052

Moisture 5 0.081 0.992 0.096 0.099

Protein 4 0.114 0.998 0.116 0.153



The calibration curve for protein in Figure 4 demonstrates 
very good correlation between the calculated (FT-NIR) to 
the actual (Dumas) values with a correlation coefficient of 
0.998 and an RMSEC of 0.114.

If validation standards are selected for the model, the RMSEP 
is displayed along side the RMSEC on the calibration curve. 
This provides a quick check on model performance.

Figure 5 is the Residual (percent difference) plot for protein 
and shows the predicted error distribution of the calibration 
standards. This plot shows the differences between the 
calculated and the actual concentration values relative to 
the actual values.

When a model is calibrated in TQ Analyst the residual plot 
is placed side by side to the calibration plot providing a 
complimentary diagnostic tool for spotting slope issues and 
potential outlier samples. Here we expect to see a random 
distribution of difference values, without any trends or slopes 
in the values. An examination of Figure 5 demonstrates that 
the error differences are evenly distributed across the whole 
component range indicating equal distribution of error for 
both calibration and validation standards.

The Predicted Residual Error Sum of Squares 
(PRESS) plot (Figure 6) shows the ranking of the 
factors and the associated variation. Each time a 
factor is added that represents useful information 
to the calibration model, the RMSECV and the 
PRESS values decrease. The information provided 
by Figure 6 shows that Factors 1 – 4 explain the 

Figure 4: Calibration curve for protein with independent validation 
(+) samples

Figure 5: Residual (percent difference) plot for protein

Figure 7: 2D Principal component scores plot for protein standards

majority of the observed spectral and concentration variation. 
A well built model will demonstrate a decrease in the amount 
of error (RMSECV) with successive factors used, as this 
model does. The PRESS plot diagnostic is used to determine 
the optimum number of factors for the model. A minimum 
number of factors were used in the model to avoid over-fitting 
the data which would result in the model performing poorly 
with samples not in the model.

TQ Analyst provides both 2 dimensional (2D) and 3 
dimensional (3D) principle component scores plots as 
visual tools for identifying outliers, trends, or patterns. 
Similar to PLS factors, Principle Components (PCs)  
are ranked by the amount of spectral variation they describe. 
However, unlike factors used in PLS calibrations plots, PCs 
do not factor in the concentration values from the standards. 
The first principal component describes the most spectral 
variation, with each subsequent PC describing the remaining 
variation. Both 2D and 3D PC Scores plots were used for 
the development of the protein model to identify outliers and 
trends in the spectra. The 2D scores plot for PC2 vs PC1 in 
the protein model (Figure 7), shows random distribution of 
the standards. The plot is ideal for PLS model development 
since it does not show grouping, trends or outlier standards. 
This indicates that the spectral variation is random. TQ 
Analyst also provides the ability to change the usage of 
individual standards within the principal component scores 
plot window, reducing development time when optimizing 
the model. By right clicking on the standard of interest 
its usage can be toggled between validation, ignore, or 
calibration, as shown in Figure 7.

Figure 6: PRESS plot for protein PLS model



The use of 3D scores plot adds a third dimension to the 
Principal Component Scores Diagnostic by displaying three 
principal components simultaneously. The 3D modeling 
in TQ Analyst has features such as the interactive zoom 
and the ability to rotate the scores plot 360 degrees which 
greatly improves the ability to see patterns, and ability 
to display onscreen sample information for efficient data 
mining. The protein 3D PC scores plot for the first three PCs 
is displayed in Figure 8, showing TQ Analyst ability to display 
useful sample information by left clicking individual points.

Figure 8: 3D Principal component scores plot for protein standards

Figure 9: 3D Principal components scores plot showing high 
correlation between PC1 and protein actual values

TQ Analyst can also plot the actual protein concentrations 
within the 3D scores plot. This feature allows the analyst 
to visually explore and quickly determine which PC(s) 
are most highly correlated to the parameter(s) of interest. 
A robust model will have PC1 highly correlated to the 
parameter of interest indicating that the variation explained 
by the 1st factor in the PLS model is due to the parameter 
of interest. Figure 9 shows high correlation of PC 1 to the 
protein concentrations indicating a robust PLS model.

Conclusion
This calibration study has demonstrated that the 
Thermo Scientific Antaris FT-NIR analyzer provides  
a rapid solution to accurately quantify the key flour 
components of moisture, protein, and ash. TQ Analyst 
offers easy and intuitive PLS calibration optimization and 
development through its visual and interactive diagnostic 
tools, such as Statistical Spectra, Residual, PRESS, and 
2D and 3D PC scores plots. The traditional quantitative 
techniques for flour analysis require trained analysts, 
the use of chemicals, may entail time consuming sample 
preparation, and are burdened by time delays waiting for 
results. Alternatively, FT-NIR can analyze flour without 
the use of chemicals, providing faster, highly accurate, 
and reliable results. It also provides short term return on 
investment by eliminating the cost of consumables, rework, 
or discarding of product that does not meet specifications. 
In addition, implementing FT-NIR to replace traditional 
techniques reduces potential delays waiting for test results 
needed to make critical production decisions. The speed 
and accuracy of FT-NIR provides quality data for real-time 
process improvements, and allows flour millers and buyers 
to verify that their flour specifications are met, thereby 
maximizing production efficiency and profitability.
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